Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 199: 115936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154171

RESUMO

Phthalates are used in plastics, found throughout the marine environment and have the potential to cause adverse health effects. In the present study, we quantified blubber concentrations of 11 phthalates in 16 samples from stranded and/or free-living marine mammals from the Norwegian coast: the killer whale (Orcinus orca), sperm whale (Physeter macrocephalus), long-finned pilot whale (Globicephala melas), white-beaked dolphin (Lagenorhynchus albirostris), harbour porpoise (Phocoena phocoena), and harbour seal (Phoca vitulina). Five compounds were detected across all samples: benzyl butyl phthalate (BBP; in 50 % of samples), bis(2-ethylhexyl) phthalate (DEHP; 33 %), diisononyl phthalate (DiNP; 33 %), diisobutyl phthalate (DiBP; 19 %), and dioctyl phthalate (DOP; 13 %). Overall, the most contaminated individual was the white-beaked dolphin, whilst the lowest concentrations were measured in the killer whale, sperm whale and long-finned pilot whale. We found no phthalates in the neonate killer whale. The present study is important for future monitoring and management of these toxic compounds.


Assuntos
Caniformia , Phoca , Phocoena , Ácidos Ftálicos , Orca , Baleias Piloto , Animais , Cachalote
2.
Environ Sci Technol ; 57(42): 16109-16120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37818957

RESUMO

Lipophilic persistent organic pollutants (POPs) tend to biomagnify in food chains, resulting in higher concentrations in species such as killer whales (Orcinus orca) feeding on marine mammals compared to those consuming fish. Advancements in dietary studies include the use of quantitative fatty acid signature analysis (QFASA) and differentiation of feeding habits within and between populations of North Atlantic (NA) killer whales. This comprehensive study assessed the concentrations of legacy and emerging POPs in 162 killer whales from across the NA. We report significantly higher mean levels of polychlorinated biphenyls (PCBs), organochlorine pesticides, and flame retardants in Western NA killer whales compared to those of Eastern NA conspecifics. Mean ∑PCBs ranged from ∼100 mg/kg lipid weight (lw) in the Western NA (Canadian Arctic, Eastern Canada) to ∼50 mg/kg lw in the mid-NA (Greenland, Iceland) to ∼10 mg/kg lw in the Eastern NA (Norway, Faroe Islands). The observed variations in contaminant levels were strongly correlated with diet composition across locations (inferred from QFASA), emphasizing that diet and not environmental variation in contaminant concentrations among locations is crucial in assessing contaminant-associated health risks in killer whales. These findings highlight the urgency for implementing enhanced measures to safely dispose of POP-contaminated waste, prevent further environmental contamination, and mitigate the release of newer and potentially harmful contaminants.


Assuntos
Caniformia , Bifenilos Policlorados , Orca , Animais , Monitoramento Ambiental , Canadá , Bifenilos Policlorados/análise , Dieta
3.
R Soc Open Sci ; 10(9): 230069, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37680501

RESUMO

Migration patterns are fundamentally linked to the spatio-temporal distributions of prey. How migrating animals can respond to changes in their prey's distribution and abundance remains largely unclear. During the last decade, humpback whales (Megaptera novaeangliae) used specific winter foraging sites in fjords of northern Norway, outside of their main summer foraging season, to feed on herring that started overwintering in the area. We used photographic matching to show that whales sighted during summer in the Barents Sea foraged in northern Norway from late October to February, staying up to three months and showing high inter-annual return rates (up to 82%). The number of identified whales in northern Norway totalled 866 individuals by 2019. Genetic sexing and hormone profiling in both areas demonstrate a female bias in northern Norway and suggest higher proportions of pregnancy in northern Norway. This may indicate that the fjord-based winter feeding is important for pregnant females before migration. Our results suggest that humpback whales can respond to foraging opportunities along their migration pathways, in some cases by continuing their feeding season well into winter. This provides an important reminder to implement dynamic ecosystem management that can account for changes in the spatio-temporal distribution of migrating marine mammals.

4.
J Anim Ecol ; 92(6): 1216-1229, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37055915

RESUMO

Quantifying the diet composition of apex marine predators such as killer whales (Orcinus orca) is critical to assessing their food web impacts. Yet, with few exceptions, the feeding ecology of these apex predators remains poorly understood. Here, we use our newly validated quantitative fatty acid signature analysis (QFASA) approach on nearly 200 killer whales and over 900 potential prey to model their diets across the 5000 km span of the North Atlantic. Diet estimates show that killer whales mainly consume other whales in the western North Atlantic (Canadian Arctic, Eastern Canada), seals in the mid-North Atlantic (Greenland), and fish in the eastern North Atlantic (Iceland, Faroe Islands, Norway). Nonetheless, diet estimates also varied widely among individuals within most regions. This level of inter-individual feeding variation should be considered for future ecological studies focusing on killer whales in the North Atlantic and other oceans. These estimates reveal remarkable population- and individual-level variation in the trophic ecology of these killer whales, which can help to assess how their predation impacts community and ecosystem dynamics in changing North Atlantic marine ecosystems. This new approach provides researchers with an invaluable tool to study the feeding ecology of oceanic top predators.


Connaître en détails la composition du régime alimentaire des grands prédateurs marins tels que les orques (Orcinus orca) est primordial afin d'évaluer leurs impacts sur les écosystèmes. Pourtant, à quelques exceptions près, l'écologie alimentaire de ces super-prédateurs reste mal comprise. Ici, nous utilisons notre nouvelle approche d'analyse quantitative des signatures d'acides gras (QFASA) sur près de 200 orques et plus de 900 proies potentielles pour modéliser leur régime alimentaire à travers l'Atlantique Nord. Les estimations de leurs régimes alimentaires montrent que les orques consomment principalement d'autres baleines dans l'ouest de l'Atlantique Nord (Arctique canadien, Est du Canada), des phoques dans le milieu de l'Atlantique Nord (Groenland) et des poissons dans l'est de l'Atlantique Nord (Islande, îles Féroé, Norvège). Néanmoins, ces estimations varient considérablement d'un individu à l'autre dans la plupart des régions. Cette variation alimentaire importante entre les individus doit être prise en compte dans les futures études écologiques qui s'intéressent aux orques de l'Atlantique Nord et d'ailleurs. Ces estimations révèlent des variations remarquables dans l'écologie trophique des orques tant au niveau des population que de l'individu, ce qui peut aider à évaluer l'impact de leur prédation sur la dynamique des communautés et des écosystèmes dans un contexte de changements climatiques en l'Atlantique Nord. Cette nouvelle approche fournit aux chercheurs un outil inestimable pour étudier l'écologie alimentaire des super-prédateurs océaniques.


Assuntos
Focas Verdadeiras , Orca , Animais , Ecossistema , Ácidos Graxos , Canadá , Dieta/veterinária
5.
Environ Pollut ; 315: 120395, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228858

RESUMO

To understand the exposure and potential sources of emerging brominated flame retardants (EBFR) and organophosphate esters (OPEs) in marine wildlife from the Norwegian Arctic, we investigated concentrations of EBFRs in 157 tissue samples from nine species of marine vertebrates and OPEs in 34 samples from three whale species. The samples, collected from a wide range of species with contrasting areal use and diets, included blubber of blue whales, fin whales, humpback whales, white whales, killer whales, walruses and ringed seals and adipose tissue and plasma from polar bears, as well as adipose tissue from glaucous gulls. Tris(2-ethylhexyl) phosphate (TEHP) and tris(2-chloroisopropyl) phosphate (TCIPP) ranged from <0.61 to 164 and < 0.8-41 ng/g lipid weight, respectively, in blue whales and fin whales. All other EBRFs and OPEs were below the detection limit or detected only at low concentration. In addition to the baseline information on the occurrence of EBFRs and OPEs in marine wildlife from the Arctic, we provide an in-depth discussion regarding potential sources of the detected compounds. This information is important for future monitoring and management of EBFRs and OPEs.


Assuntos
Balaenoptera , Retardadores de Chama , Focas Verdadeiras , Ursidae , Animais , Retardadores de Chama/análise , Animais Selvagens , Monitoramento Ambiental , Organofosfatos , Ésteres , Fosfatos
6.
PLoS One ; 17(5): e0268355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35622815

RESUMO

In the northern hemisphere, humpback whales (Megaptera novaeangliae) typically migrate between summer/autumn feeding grounds at high latitudes, and specific winter/spring breeding grounds at low latitudes. Northeast Atlantic (NEA) humpback whales for instance forage in the Barents Sea and breed either in the West Indies, or the Cape Verde Islands, undertaking the longest recorded mammalian migration (~ 9 000 km). However, in the past decade hundreds of individuals have been observed foraging on herring during the winter in fjord systems along the northern Norwegian coast, with unknown consequences to their migration phenology, breeding behavior and energy budgets. Here we present the first complete migration track (321 days, January 8th, 2019-December 6th, 2019) of a humpback whale, a pregnant female that was equipped with a satellite tag in northern Norway. We show that whales can use foraging grounds in the NEA (Barents Sea, coastal Norway, and Iceland) sequentially within the same migration cycle, foraging in the Barents Sea in summer/fall and in coastal Norway and Iceland in winter. The migration speed was fast (1.6 ms-1), likely to account for the long migration distance (18 300 km) and long foraging season, but varied throughout the migration, presumably in response to the calf's needs after its birth. The energetic cost of this migration was higher than for individuals belonging to other populations. Our results indicate that large whales can modulate their migration speed to balance foraging opportunities with migration phenology, even for the longest migrations and under the added constraint of reproduction.


Assuntos
Jubarte , Animais , Cabo Verde , Cetáceos , Feminino , Jubarte/fisiologia , Fenômenos Físicos , Gravidez , Estações do Ano
7.
Ecol Evol ; 11(11): 6716-6729, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141252

RESUMO

In cetaceans, blubber is the primary and largest lipid body reservoir. Our current understanding about lipid stores and uses in cetaceans is still limited, and most studies only focused on a single narrow snapshot of the lipidome. We documented an extended lipidomic fingerprint in two cetacean species present in northern Norway during wintertime. We were able to detect 817 molecular lipid species in blubber of killer whales (Orcinus orca) and humpback whales (Megaptera novaeangliae). The profiles were largely dominated by triradylglycerols in both species and, to a lesser extent, by other constituents including glycerophosphocholines, phosphosphingolipids, glycerophosphoethanolamines, and diradylglycerols. Through a unique combination of traditional statistical approaches, together with a novel bioinformatic tool (LION/web), we showed contrasting fingerprint composition between species. The higher content of triradylglycerols in humpback whales is necessary to fuel their upcoming half a year fasting and energy-demanding migration between feeding and breeding grounds. In adipocytes, we assume that the intense feeding rate of humpback whales prior to migration translates into an important accumulation of triacylglycerol content in lipid droplets. Upstream, the endoplasmic reticulum is operating at full capacity to supply acute lipid storage, consistent with the reported enrichment of glycerophosphocholines in humpback whales, major components of the endoplasmic reticulum. There was also an enrichment of membrane components, which translates into higher sphingolipid content in the lipidome of killer whales, potentially as a structural adaptation for their higher hydrodynamic performance. Finally, the presence of both lipid-enriched and lipid-depleted individuals within the killer whale population in Norway suggests dietary specialization, consistent with significant differences in δ15N and δ13C isotopic ratios in skin between the two groups, with higher values and a wider niche for the lipid-enriched individuals. Results suggest the lipid-depleted killer whales were herring specialists, while the lipid-enriched individuals might feed on both herrings and seals.

8.
Sci Rep ; 11(1): 12266, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112839

RESUMO

Determining the mechanisms driving range-wide reductions in Atlantic salmon marine survival is hindered by an insufficient understanding of their oceanic ecology and distribution. We attached 204 pop-up satellite archival tags to post-spawned salmon when they migrated to the ocean from seven European areas and maiden North American salmon captured at sea at West Greenland. Individuals migrated further north and east than previously reported and displayed increased diving activity near oceanographic fronts, emphasizing the importance of these regions as feeding areas. The oceanic distribution differed among individuals and populations, but overlapped more between geographically proximate than distant populations. Dissimilarities in distribution likely contribute to variation in growth and survival within and among populations due to spatio-temporal differences in environmental conditions. Climate-induced changes in oceanographic conditions will alter the location of frontal areas and may have stock-specific effects on Atlantic salmon population dynamics, likely having the largest impacts on southern populations.


Assuntos
Migração Animal , Salmo salar , Animais , Oceano Atlântico , Geografia , Dinâmica Populacional
9.
J Fish Biol ; 99(2): 462-471, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33759194

RESUMO

Acoustic telemetry was utilized to track 49 brown trout (Salmo trutta) and 37 Arctic charr (Salvelinus alpinus) first-time migrants of wild origin [post-smolts; mean LF (fork length): 169 and 172 mm] in a large fjord in northern Norway. The S. trutta were registered at sea for more than twice the time of the S. alpinus (medians of 54 and 22 days, respectively). Both species were mostly detected near river mouths (>80% of detections) and almost exclusively spent their time (>95%) within the interior 18 km of the fjord. They were surface oriented, with most detections at <1 m depth and S. trutta deeper on average (median mean depths of 0.7 and 0.5 m, respectively). This study concludes that post-smolts of both species stay closer to the surface and to river mouths than larger veteran migrants. This study emphasizes the importance of river mouths and upper water layers for the survival of both species during their first marine migration.


Assuntos
Migração Animal , Rios , Animais , Estuários , Telemetria , Truta
10.
J Fish Biol ; 96(2): 327-336, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31661157

RESUMO

The year-round thermal habitat at sea for adult Atlantic salmon Salmo salar (n = 49) from northern Norway was investigated using archival tags over a 10 year study period. During their ocean feeding migration, the fish spent 90% of the time in waters with temperatures from 1.6-8.4°C. Daily mean temperatures ranged from -0.5 to 12.9°C, with daily temperature variation up to 9.6°C. Fish experienced the coldest water during winter (November-March) and the greatest thermal range during the first summer at sea (July-August). Trends in sea-surface temperatures influenced the thermal habitat of salmon during late summer and autumn (August-October), with fish experiencing warmer temperatures in warmer years. This pattern was absent during winter (November-March), when daily mean temperatures ranged from 3.4-5.0°C, in both colder and warmer years. The observations of a constant thermal habitat during winter in both warmer and colder years, may suggest that the ocean distribution of salmon is flexible and that individual migration routes could shift as a response to spatiotemporal alterations of favourable prey fields and ocean temperatures.


Assuntos
Migração Animal/fisiologia , Salmo salar , Telemetria , Animais , Ecossistema , Oceanos e Mares , Salmo salar/fisiologia , Estações do Ano , Análise Espaço-Temporal , Telemetria/métodos , Temperatura
11.
Sci Rep ; 9(1): 7890, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133666

RESUMO

Predation and mortality are often difficult to estimate in the ocean, which hampers the management and conservation of marine fishes. We used data from pop-up satellite archival tags to investigate the ocean predation and mortality of adult Atlantic salmon (Salmo salar) released from 12 rivers flowing into the North Atlantic Ocean. Data from 156 tagged fish revealed 22 definite predation events (14%) and 38 undetermined mortalities (24%). Endothermic fish were the most common predators (n = 13), with most of these predation events occurring in the Gulf of St. Lawrence and from the Bay of Biscay to the Irish Shelf. Predation by marine mammals, most likely large deep-diving toothed whales (n = 5), and large ectothermic fish (n = 4) were less frequent. Both the estimated predation rates (ZP) and total mortality rates (ZM) where higher for Atlantic salmon from Canada, Ireland, and Spain (ZP = 0.60-1.32 y-1, ZM = 1.73-3.08 y-1) than from Denmark and Norway (ZP = 0-0.13 y-1, ZM = 0.19-1.03 y-1). This geographical variation in ocean mortality correlates with ongoing population declines, which are more profound for southern populations, indicating that low ocean survival of adults may act as an additional stressor to already vulnerable populations.


Assuntos
Migração Animal , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Mortalidade , Comportamento Predatório , Salmo salar , Animais , Oceano Atlântico , Canadá , Dinamarca , Monitorização de Parâmetros Ecológicos/instrumentação , Geografia , Irlanda , Noruega , Dispositivo de Identificação por Radiofrequência , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/estatística & dados numéricos , Comunicações Via Satélite/estatística & dados numéricos , Espanha
12.
PLoS One ; 5(8): e12261, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20808853

RESUMO

With the current trends in climate and fisheries, well-designed mitigative strategies for conserving fish stocks may become increasingly necessary. The poor post-release survival of hatchery-reared Pacific salmon indicates that salmon enhancement programs require assessment. The objective of this study was to determine the relative roles that genotype and rearing environment play in the phenotypic expression of young salmon, including their survival, growth, physiology, swimming endurance, predator avoidance and migratory behaviour. Wild- and hatchery-born coho salmon adults (Oncorhynchus kisutch) returning to the Chehalis River in British Columbia, Canada, were crossed to create pure hatchery, pure wild, and hybrid offspring. A proportion of the progeny from each cross was reared in a traditional hatchery environment, whereas the remaining fry were reared naturally in a contained side channel. The resulting phenotypic differences between replicates, between rearing environments, and between cross types were compared. While there were few phenotypic differences noted between genetic groups reared in the same habitat, rearing environment played a significant role in smolt size, survival, swimming endurance, predator avoidance and migratory behaviour. The lack of any observed genetic differences between wild- and hatchery-born salmon may be due to the long-term mixing of these genotypes from hatchery introgression into wild populations, or conversely, due to strong selection in nature--capable of maintaining highly fit genotypes whether or not fish have experienced part of their life history under cultured conditions.


Assuntos
Pesqueiros , Oncorhynchus kisutch/crescimento & desenvolvimento , Oncorhynchus kisutch/genética , Fenótipo , Migração Animal , Animais , Aprendizagem da Esquiva , Feminino , Masculino , Oncorhynchus kisutch/fisiologia , Análise de Sobrevida , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...